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13.0 DEALING WITH DENSITY-DEPENDENCE
13.1 Introduction

"Density-dependence” is a convenientlabel for the notion that
populations cannot increase in size incdefinitely. Eventually some resource
becomes linting and the population tends to level fi. In long-lived
vertebrates, early survival is often the first parameter tochange with
increasing abundance. The best known model for a density-dependent
response is the logistic equatiofeq. 12.12 aad 12.26) described inSection 12.3
and 12.5. The resulting curve (Fig. 12.3) shows a smoothapproach to an
asymptote (usually denoted byK). A major problem in applying the logistic
equation is that the rate ohcrease (r) declines continuously hroughout the
growth of the population,approaching zero as thepopulation size approaches
K. This behavior isevident from the underlying differential equation, but is
perhaps more conveniently exhibited in the anabgous difference equation
(eq. 12.25) where it can be seen that

N
r=r(l-—=
-2

so that when population size is smaklative to K, r is nearly athe maximum
value, r, which is sometimes appropriately labeleg .

The logistic curve became popular after Raymond Pearl (1926 ) used it to
describe the growth of yeast populations. Whitemay be useful as amodel for
growth  of populations of some organisms, the |logistic is generally
unsatisfactory as aodel for growth of populations of drge vertebrates. This
is because, in practice, the rate of increase tends taebetively constant over
much of the range of population size and hen begins to decrease as the
asymptotic value is approached:or this reason, d'generalized logptic" curve
provides a much more saféastory model for krge vertebrates. For this model,

r holds nearly constant over much of the range of population growth,
declining quite steeply asthe asymptotic level (K) is approached. The
generalized logistic is written as a difference equation:

N\,
Nt+1 = Nt +r1Nt[1_(?t) ] (13-1)

Note the change in notation from t-1 and t used Ghapter 12 to and t+1.This
is done to conform to thenotation used in references cited below. Wen z=1
the rate ofincrease isas given above, i.e., the rate for theoridinary logistic,
written asa difference equation. Acomparison (Fig. 13.1) ofthe two rates of
increase (for z=1 and z= 5) shows why thegeneralized logistic yields a
population growing at arelatively constant rate up riil the “carrying
capacity” level (K) is approached, and is thus abetter model for population
growth of the long-lived vertebrates, which generally appear tohave a
relatively constant growth rate at levels below carrying capacity.

In considering density dependence it is important to have in mind some
characteristics oflifferent groups ofspecies. Much of the current literature
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deals wth invertebrates, where very high rates of increase can lead to
chaotic-seeming behavior ofpopulations. Atthe other extreme are the long-
lived vertebrates with relatively low growth rates thatusually result inless
erratic behavior. Many (but not all) species of fish canmachieve high growth
rates and may thus follow patterns closer to those ofinvertebrates. Many of
the smaller vertebrates have short generation times and thus lack the
stabilizing qualities of age-structured populations and can also show
substantial year-to-year fluctuationtn abundance. Consequently, some of the
complexities inthe current literature maynot be relevant when considering
the long-lived vertebrates, and attempts to applymodels derived from studies
of invertebrates to vertebrate populations may be quite unsatisfactory.
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Fig. 13.1 Comparison of rate of increase for the ordinary and generalized logistic growth
curves.

Unfortunately, there isn't much in the way atcurate and precise data
on population growth in drge vertebrates over awide range of population
sizes, making it difficult to demonstrate directly that population growth is
more like the generalized logistic curve than the ordinary logistic. However,
one considers Fig. 13.1and notes thatmany vertebrate populations doappear
to grow exponentiallyover much ofthe observed range,the ordinary logistic
is much less palatable. Experience with harwested populationsalso shows that
the ordinary logistic will not support observed rates of ogals. It isdifficult
to settle on a value of z, the parameter governing the rate of decreasewihhr
increasing population size. Gten one must make anarbitrary choice. In
developing guidance for managing cetaceans, the International Whaling
Commission considered various value$ z. The value used invarious examples
here is z=5.0, which gives the maximum numerical increment ofgrowth at
70% of K.Because the details afensity-dependentresponses and'population
regulation" are sopoorly known for large vertebrates, about all that can be
done here is to try tesupply some guidance for practical approaches to the
subject. The basic assumption is mde that populations do not grow
indefinitely, and thus are somehow limited.
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13.2 Some historical aspects

Hairston, Smith, and Slobodkin (1960) produced an aklembracing
analysis, starting with the premise that energy is not accumulated
significantly in organic matter, and working up from there toconclusions
about major trophic levels. Two critigues of their paper then appeared
(Ehrlich and Birch 1967, and Murdoch 1966), and were rebutted byothiginal
authors (Slobodkin, Smith, and Hairston 1967). The ebutal extends the
original thesis somewhat and makes for interesting reading. All of these
papers depend onqualitative assessment of limitingcases andare thus not
very helpful in deciding what controls aspecific population. One might, for
example, agreethat predators as alass arefood-limited, without abandoning
the notion that particular prelatory species seldom increase beyond bounds
imposed by behavioral (territorial) constraints.

Andrewartha and Birch (1954) offered the strongest objections to the
idea of density-dependence.Various critics of their views emphasized their
primary involvement with insects and that many of their conclusions depend
on events observed neathe geographic limits of particular species, where
"limitation by catastrophe” probably daes control populations. That this is an
over-simplification of their views was vigorously pointedut by both authors,
individually and jointly. Some amelioratiorof the original stand seemsevident
in later papers by Andrewartha and Birch. In any case, their work has
provided useful evidence that many factors mayinteract tolimit populations,
not the least ofwhich is the effect of essentially random "shocks" from
weather conditions. Murdoch (1994:284) claimed that the “decades-old
controversy about regulation has been resolved inrecent years”, suggesting
that the “Ncholson school was right that regulation via stabilizing density-
dependent processes is essential to accoufdr species persistence” but that
“the local randomnessand spatially out-of-phase dynamics emphasized by the
Andrewarthan school can create the necessary stabilizing density-
dependence”.

V.C.Wynne-Edwards promulgated wWat might besaid to be auniversal
solution -- that social factors, frequently expressed as tdtorialism, control
population size. His thesis adely pardels the wildlife management principle
of carrying-capacity, and fits nicely with a readily observed aspect of the
behavior ofmany species. There ardiowever, too many situations inwhich
territorial behavior @es not seemto be either pronounced or effective,
perhaps most notable among the larger herbivores. Wynne-Edwards'
philosophy isexpounded atength in a arge book (1962), andcompactly in a
later paper. Several authors have considered thateak point in his theme is
an invocation ofgroup-selection as aecessary evolutionary device toinsure
success of regulation by territorialism.

A specific physiological mechanism for population regulation was
proposed byJ.J.Christian, and hen tied to social aspects (Chstian and Davis
1964). Objections to the "adrenal function" theory have centered around
apparent absence ofenlargement ofthe adrenal glands under situations
where it would seem tdoe called for by thecurrent status orultimate fate of a
particular population. D.Chitty has been particularly explicit on this point
(see thediscussion and references inChristian and Davis 1964). @itty's own



13.4

attitude onthe matter of regulation appeared mostly to have been one of a
rather reluctant invocation of genetic mechanism, atleast to handle the
problem of cyclic crashes of lemmingsand voles. The mostdetailed &position
of his "polymorphic behavior" mechanism was by one of hisstudents (Krebs
1964) who contrasted that theory with Christian's stress hypothasdés afood-
supply hypothesis offered by Pitelka (cf. Pitelka 1958).

One of the apparent reasons for Chitty's belief ichange inquality in
vole populations during a decline is thevident necessity forsome deleterious
factor that persists through more than onegeneration in order tdring the
population down to the low levels observed in the field. In a long-term study of
the vole, Microtus californicus, Pearson (1966) came to theconclusion that
such a factor is supplied by predation. He contendedthat some other
(unspecified) cause is regsonsible for the initial decline, but that predation
then acts to reduce the population to very low levelf©iemeupon the predators
then die off (in the Arctic) or shift to other prey (in temperate regions).

A feature not sufficiently stressed in manyanalyses ofpopulation
regulation is that of evolutionary forces. valuable review ofthe importance
of studying evolutionary ecology is that of Lack(1965pne of his more telling
points is thatfew real opportunities remain tostudy ecological processes in a
sufficiently natural state that one might hope to rppe seletive forces free
of changes due to human influence.

Even a short excursion into the literature is sufficient toshow that
there are many views of populatioregulation. Itseems reamable tosuppose
that, just as avariety of life forms has evaled, so may have arange of
controlling mechanisms. The actual structuring of apopulation model may,
however, all for a specific choice ofmechanism, particularly if relatively
long spans of the are to bedealt with On the other hand, ifwe choose a
mathematial relationship to representpopulation regulation without good
evidence that it represents a mechanisnactually existing inthe population,
then we are really deciding the outcomes of the modelling exercisadwnance,
so that it may have little relevance to the actual population.

13.3 Testing for density-dependence

If a population appears tdevel-off, it may be desirable tdave a
statistical test todemonstrate that the apprent tendency iwot due tochance
fluctuations alone. There is aery large literature on testing for density-
dependence, but the results are as yetoften ambiguous and controversial for
large vertebrates. This is perhapsss true for smaller organisms, particularly
insects. Due to the very different life histories involved, suitable tests for
density-dependence for insects shoufbt necessarily hold for larger species.
In particular, most insect populations are capable of very high rates of
increase, asare somefish populations. Adensity-related response maythus
occur over a short time span and be readily evident in the data.

One supposed test for density-dependertes been repeatedly shown to
be of dubious value over thelast 30 yars or so, but still turns up in the
literature. No doubt this is because the approach is simple and seems natural. It
consists ofestimating A from the ratio oftwo successive population estimates,
At = Nt/Nt.1, and then calculating theorrelation coefficient of A\t and Ne-1 on
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a series of suchestimates. IfAt is negatively correlated with Nt.1, then one
might assumedensity-dependence imvolved asAi apparently decreaseswith
increasing population size. The difficulty, howevels that values of Nappear
successively inthe numerator and denominator ofthe ratio determining At

and this induces a spurious correlation. This prospees dscussedfor insects
by Watt (1964), and some additional examples were noted by Eberhardt (1970).

There has beerconsiderable interest intesting for density dependence
for the last 30-40 years, but it remaingncertain whether density dependence
can be reliably detected from sequence ofdata on population size or trend
alone. Many of the slower-growing populations appear toincrease fairly
smoothly from low levels, and ultimately show signs of leveling-off. Those
with high growth rates maybehave quite erratically, making it difficult to
discern any pattern. Most of the efforts to devise tests appear tohave benn
inspired by studies of populations showing rather erratic growth patterns,
particularly insect populations.Nearly all of the recent efforts proceedalong
the lines of statistical hypothesis-testing. Most of the available statistical
methodology for conducting such tests is based orinear models, and this
limits the range ofmodels that can beonsidered. Most of the testsdepend on
taking logarithms (base e, usually) of population size, which generally
appears toyield symmetrical distributions ofdeviations from the model, and
thus encourages assuming normally distributed errors (a necessary
assumption inmany of the tests). Statistical hypothesis testing depends on
setting up a “null” model and attempting toreject that model in favor of an
alternative model. Rejecting the null model does notdemonstrate that the
alternative model is correct, fact that somtimes appears to be overlooked in
the ecological literature. Because the nullmodel generally needs to belinear
and fairly simple in form, the process more or less restricts attention to two
models, bothlinear and quite simple. In some cases,‘nested” models may be
considered, giving a little more flexibility.

A number of authors have used the following model for density
dependence:

N, =K (132)

Where 0<b<1, and K is thasymptotic value. An example ofthe resulting curve
is shown in Fig. 13.2. Taking logarithms gives the model commonly used in
studying density dependence:

X, = bX_+(1-b)log, K (13.3)

Here X denotes the logarithm of Nand b and K are agjiven above. In
producing statistical tests, an error term (), assumed to benormally
distributed wth some variance is added. Bulmer (1975) wrote the above
equation in terms of deviations from = log K:

XM= b()(t —H) &
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Bulmer's is one of the more widely quotedpapers on testing fordensity
dependence. He used the null model (described as a “random walk” model:

X =X +&
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Fig. 13.2 An example of curves represented by Eq. (13.2). K=5,000, b=0.95.

Pollard etal. (1987) used the samemodels, but added another null model,
described as a “random walk with drift”:

X1 =X 4T +E, (13.4)

It is importantto note that this is thdogarithmic form of the usual model for
exponential growth (over one unit of time) with a multiplicative error tergm (

=loge &):

N,.; = N exp( )

Pollard et al. use the three models [one, eq. (13.3) representing density
dependence and thetwo null models above] in“nested” form, sothe tests can
presumably beused tochoose amng the 3 models. Examples of theandom
walk and random walk with drift are shown in Fig. 13.3 and 13.4.
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Fig. 13.3 An example of the random walk model used as a null model in various tests for
density dependence.
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Fig. 13.4 An example of a random walk with drift null model (Eqg. (13.4)).

An example ofthe linear (log scale form) of eq. (13.3)with an additive error
term appears in Fig. 13.5.
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Fig. 13.5 . An example of the linear model of eq.(13.3) with an additive error term

The sizable cluster of points on the right results from the substantial section of
the underlying curve (Fig. 13.2 ) close to the asymptotic value.

Sonme problems with the approach totesting density dependence with the
models illustrated above can be seen by cparing the basic model (eql3.2)
and Fig. 13.2) wth the generalized logistic of eq. (13.1). Making such
comparisons requires a comparable set pH#rameters. This can beobtained by
choosing paameter values that give similar values of A for the models of
eqs(13.1) and (13.2).Values of A for long-lived vertebrates mayrange up to
about A = 1.5but are often close to 1.2. Rearranging eq.(13.2) gives:

A= NNt _ Ntb—lKl—b =(§)1—b
t+1 1

and values (Fig. 13.6) of b=0.95 and b=0.98 fall in this range (up to A = 1.5).
Comparing the generalized logistic with theseo curves (Fig. 13.7) shows the
sharp difference between eq.(13.1) and eq(13.2). Using smaller values of b
shifts plots of eq. (13.2) tothe left but yields the much larger values of
A characterizing insects and some species of fish.



13.9
15 .
1.4 -

b=0.95

1.3 4

LAMBDA

1.2

GENERALIZED LOGISTIC

1.1 A

1.0 T T T T Y T T T Y Y Y T T 1

TIME

Fig. 13.6 Lambda for density dependence model used by Bulmer (1975) and Pollard et al.
(1987) compared with lambda for a generalized logistic curve. Values of b used here are much
larger than those encountered in studies of invertebrates in order to obtain values of A in the
range expected for long-lived vertebrates.
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Fig. 13.7. Comparisons of curves from eq. (13.1) and a plot of the generalized logistic (broken
line above). Generalized logistic curve based on lambda 1.2 and z = 5.0.

A basic issue thus is that theurves are quite different, so thatthere
may be a question about efficiency of the testif the alternative model really
should be more like the generalized logistic than like eq.(13.1). Another
important issue is that the generalized logistic cufyehaves essentially as an
exponential curve for the lower part ofits range (see Fig. 13.1), soone would
expect that the nullmodel of eq.13.4 would not berejected for a population
growing in the lower part ofits range. Thus the test wouldhave essentially
zero power of detecting density dependence in an importantportion of the
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range of growth. This is not necessarily true for eq. (13.2) asA is large and
changes dramatically in the early growth phase for smaller values Hfeb.ce
the tests may be effective for insects and fail for long-lived vertebrates.

Dennis and Taper (1994) proposddsts for a more complex model of the
following form:

o= N expla b, +07,) (135

where b <0and Zis assumed normally distributed with zero mean and unit
variance, while ois a constant that lets one choose thevariance ofthe the
error term. Taking logarithms gives:

X, =X +a+be" +0Z (13.6)

This model is thusnonlinear (because ofthe exponential term), making for
“intractable” distributions oftest statistics. Dennisand Taper got around the
problem by usingbootstrapping and some simlations tocheck their results.
The model ofeq.(13.5) isequivalent to oneused by WE.Ricker (1975) tostudy
stock-recruitment infish [essentially the relationship between size of a
parental generation (stock) and the succeeding generation (recruits)].
Without the error term, eq.(13.5) can be written as:

r(l—%

where r is the growth rate and K is the asymptotic value. If r is in rdrege of
growth for most long-lived vertebrates (say 0 < r <0.5) ten a good
approximation to the above curve cdre obtained byusing the first two terms
of the Taylor series expansion of the exponential term above, obtaining:

Ny = N, +rNt(1_%)

which is the discrete from of the logistic growth curve (more details are
available in Eberhardt 1977). This brings the model of Dennis and Té&p294)
closer to the kind of growth curve onmight expect would hold for long-lived
vertebrates. However, theywlso usenested models with the sameandom walk

and random walk with drift (eq. 13.4) usedabove. Hence, if thegeneralized
logistic actually is the best model for a given population, then the power of the
test for populations atthe lower end of the growth range isagain essentially
zero, as discussed above.

Further difficulties with the recent approaches tdesting for density
dependence w®re proposed by Shenk etal. (1998) who wused coputer
simulations designed to mimic the incorporation of sampling errorthim data.
In most assessments, the error term is assumed to be due to “changéemimte
and other environmental factors” (Bulmer 1975), although Bulmer did
consider sampling error inone of his tests. Shenk edl. concluded that
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“because these tests have been shown to be either invalid when sarhpling
variance occurs in the population abundances (Bulmer’'s R, Pollard et al.s’s
and Dennis and Taper's tests) or lackpower (Bulmer's R* test), little
justification exists for use ofsuch tests tosupport or refutethe hypothesis of
density dependence”. It seems likely that their results will not belélsé word
on the issue, inasmuch as it is possible to estimate the contributiosaofpling
error in atleast somecircumstances, and also because theychose touse a
model of alarge mammal population tosimulate density dependence intheir
analyses, while most of the mthodology described above seems most
appropriate for insect populations.

Only a brief sketch of aparent problems in testing for density
dependence has been attemptedre. Clearlythe suggesteddifficulties need to
be examined inmore detail. This calls for assessments afhe actual tests and
thus brings in the subject of likelihood ratio testing.

13.4 Population regulation

A Dbroader view of the issues involved in testing fdensity dependence
was tken by Murdoch (1994). He d$cussed population reguldon, “which
arises as a result gfotentially stabilizing density-dependent processes,even
when brought about by ‘non-equilibrium’ mechanisms”. He defined
regulation very broadly, stating “Population regulation seems bestdefined by
defining non-regulation, which is random walk dynamics”. He defined
random walk in the form described above ramndom walk with drift” (eq.13.4)
and thus espousedthe null model of exponential growth. Such apopulation is
unbounded (i.e., increasemdefinitely) and thus Murdoch stated that“we can
identify regulation with boundedness”. Because nearly all populations
(excepting perhaps humans) appear to be bounded, practical-minded
observers may see little reason to study density dependence. However,
Murdoch suggestedseveral possibilitiesfor modes ofpopulation changethat
may transcend the simpler concepts of density dependence. Henoted that
regulated populations“thus include not only those with a stableequilibrium
but also those with a stableattractor, i.e., cyclic or chaotic populations”. A
cyclic model was described here by eq.(12.33) and (12.34) iHadtrated in the
upper panel ofFig. 12.4. Aother very interesting concept for regulation
without appmrent density dependence can be developed by considering a
metapopulation in which isolated subpopulations follow a random walk
(without “drift”) and ultimately go extinct but with the area they occupied
later recolonized by immigation from another dstinct population. Mirdoch
(1994:275) commented that “little can be infed from a statistical analysis of
the time series of a singlepopulation. Thus if we areinterested inexploring
regulation in aparticular population weneed toinvestigate the mechanisms
directly.”

Murdoch (1994) repoted the results from assessments of darge
number of sets ofdata onsmall bird populations that found thepopulations to
be remarkably stable. He commented that “The remarkable invariancéhege
bird populations makes itdifficult to believe that they arenot in fact well
regulated. Ifthey are, we clearly have still not developed adequate means of
detection”. From a statistical point of view, there islittle or no prospect of
detecting tight regulation from an analysis ofthe time series ofobservations
alone. This is essentially proposing prove a null hypothesis holds, when we
can only reject ahypothesis through statistical analysis.Another example of
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this problem concerning an elk population is discussed in Section 14.6 than
example there is good evidence of astrong climatic effect that results in
dramatic changes infirst-year survival, yet the population trend isfar less
variable than would be expected. Our tentative conclusion is that highvival
of adults “buffers” the effect of variable first-year survival, and that there is a
strict upper limit on first-year survivalenforced bythe avalability of winter
thermal refugia. Examination opopulation trendscan only show thatthere is
much less population variability than one wald expect on the basis of
environmental data (30 yars ofsnow depth data are available) sothat the
main prospect for assessing densityeffects is by direct measurement of
population parameters. Detecting regulation hen requires that the
populations somehow be perturbed and essenpafameters monitored during
the return to an equilibrium condition.

13.5 Testing for a maximum net productivity level.

Thus far we have seen that the prospects for detecting density
dependence from a series of masurements opopulation trend are presently
doubtful. In the present section, we assumethat density dependence does
prevail in a population and seek a mans todetermine how it affects the
current trend. An important practical problem isto determine status of a
population with respect to the maximum netoductivity level (MNPL). This is
the point where the slope of the-shaped curve opopulation growth shows a
change in rate of change dhe slope (the inflection point of the curve).
Determining status of apopulation wth respect tothis level isimportant for
several reasons.One is that the maximum sustainable yield (MSY) of a
population can be &ken atthis level, a secondis that this point figures in
legislation that requires managing populations at orabove that level (for
example, the Marine Mamnal Protection Act of 1972), and a third is the
evidence (suggested ine&ion 13.3) that there likely is little prospect of
detecting density dependence using the approaches presentltheiditerature
when apopulation isbelow the inflection point in the growth curve. It is
important to stress that the test suggested here dependassumming that an s-
shaped growth curve des govern the trend of aparticular population, i.e.,
that we assume density dependence exists.

The basis for the test is to attempt to ascertain whether theent
trend of the population traces out a curve that is concave upwards(below
MNPL) or concave downwards (above MNPL). This approach thus assumes an s-
shaped growth curve and the existence d&nsity dependence. Thiest has two
stages and depends on the approximate testcimvilinearity given in Section
1.7. In the first stage, astraight line and second degree polynomial are fit to
untransformed data. If the test for curvature is significant, weonclude that
the population isbelow MNPL. If the test is notsignificant on data in the
arithmetic scale, hen we transform tothe log scale and repeat the test.
Significance 8ggests he population isabove MNPL. The test wasstudied with
simulations based on theassumption that the generalized logistic applies to
first-year survival according to eq. 13.7.

s = slt-(GY] (13.7)
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Here N, K, and z are abefore and g is a constant while s; denotes first-year
survival. This general approach was later used in the simlations of Shenk et
al. (1998). More details on thetest andsimulation are available in Eberhardt
(1992). The approach essentially depends onthe fact that the usualgrowth

curve is concave upwarddelow MNPL and concave downwardsabove MNPL.

However, transformation to the logarithmiscale yields aurve that isnearly
a straight line below MNPL but remains concave downwardsabove thatpoint

(cf. Eberhardt 1992:Fig. 3), and this seemed tamprove the power of the test
(Eberhardt 1992).

13.6 Components of density dependent responses

If, as seems to béhe casegenerally, one cannot reliably detect density
dependence from a sequence ofeasurements opopulation trend data, itwill
be necessary toexamine the behavior of population parameters as the
population changes. Thus far there arelatively few sets of datathat provide
the necessary details. Somgreliminary results can, however, besuggested. It
appears to be generally accepted principle that adult female survival is the
key to well-being of at least the@opulations ofthe long-lived vertebrates, and
quite possibly to most of the sexuallyeproducing species. Over 20 \ears ago it
was proposed that there appears to be sequence of changes ivital rates as
population density increases towards maximal levels Hberhardt 1977). Later
studies support this sequence (Fowler 1981,1987, @illard et al. 1998). The
proposed sequence is given in Fig. 13.8.

With the advent ofeffective mark-and-recapture methods, particularly
those employing radiotelemetry, ithas become possible to obtaindata on this
sequence for aumber oflarge mammal populations, and to estimate theate
of change X) from such data. Often theesulting atimate ofA can bechecked
by direct estimates ofpopulation density over time, or through neasures of
relative abundance (indices ofabundance). Inasmuch asost estimates from
field data are subject to avariety of potential biases, itis very important to
have estimates from both reproductive and survival data and from
independent direct measures (census or index).

Immature Age of first Reproductive rate Adult mortality

mortality > reproduction > rate of adult females > rate

rates becomes reduced increased

increase increased

........ D T Ty R, R T T T U
Order of events as population increases

________ S e D e D e D 2D

Fig. 13.8 Sequence of events contributing to regulation as a population of long-lived
vertebrates increases in abundance.

For populations with little impact of human activities, adult female
survival appears likely to be at least 0.94 and likely higher (Fig. 13.9). Many of
the examples used here wemabjected to impactsthat likely reduced survival
below a feasible maximum. Consequently, sikems very likelythat adult female
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survival will be at least94% and may be99% or higher in the prime age
classes under truly undisturbed conditions. Such ahigh annual survival is
necessarily accopanied by reductions in survivaldue tosenescencewhich
may not always be #&ken into account in repded estimates ofadult female
survival.

12

10

FREQUENCY

0.9 0.92 0.94 0.96 0.98 1
SURVIVAL RATE

Fig. 13.9. Frequency of adult female survival rates. Most of the examples are from large
mammal data, but a few are from long-lived birds. Dark bars represent species where there is
reason to believe human influence might have a minor influence, while those represented by the
lighter bars likely were affected by modest human influences.

Under largely undisturbed conditions, it seems reasonably well-
established that adensity-dependent response in long-lived vertebrates will
initially be evident in first-year survival. Poor first-year survival normally
results in poorerphysical condition whichwill, in turn, result in adelay in
ages offirst reprodwction. It may well be that these two factorswill be
sufficient to control population growth without invoking the subsequent
stages of Fig. 13.8, but extreme conditions may wIl result in an impact
reflected in all four stagesThe Hawaiian monk seals ofFrench Frigate Sloals
provide one example of this result (Section 14.5 and Example 13.1 below).

In Chapter 11 (Section11.9) we considered amethod for obtaining
approximate variance estimates for the rate ofpopulation change A). An
essential component is estimatingthe partial derivatives of\ with respect to
survival and reproductive rates (eq. 11.13). These provide ameasure of the
relative importance ofsuch rates indetermining population growth. They
indicate that adult female survival is most mportant, wth reproductive rate
next, and survival to reproductive age apparentbast influential (Fig. 13.10).
We can thus speculate that, because long-lived vertebrates have relatively
slow rates ofpopulation growth, early survival might bethe bestmechanism
for at least initiating population regulation.
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Figure 13.10 Relative importance of components of rate of population change for a number of
species of long-lived vertebrates.

The evidence for reduced juvenile survival asthe first parameter to
change with increasing population densitg now quite substantia Gaillard et
al. (1998:Table 1) reped that juvenile survival was implicated in 7 of 8
species for which there was evidence ofdensity dependence. Theyoted that
Fowler's (1987) review showed juvenile survival involved in 15 of 21species
for which density dependence was reported. A major problemassessingdata
from the literature s that the chronological sequence in which various
parameters change often cannot bedetermined from the reports, but it does
seem clear that changes inthe age offirst reproduction largely follow as a
consequence ofthe reduced resource availability leading to reduced early
survival.

Gaillard etal. (1998) presented datthat showed much greater relative
variability (coefficient of variation) injuvenile survival (their Table 3) as
contrasted tahat of adult female survival (their Table 2). The likely cause of
the higher variability in juvenile survival was illustrated by Gaillard et al.
(1998:Fig. 1) as thesequence in ime of adult female and juvenile survival
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rates. As density increased, juvenile survival decreased sharply, thus

substantially increasing the coefficient of variation. @illard et al. (1998)

noted that "only two islandpopulations $oay sheep andred deer) exhibited

density dependence inadult survival® and that "Even for these two species,

survival of adult females varies much less han juvenile survival." Discussing

red deer, Saether (1997) pointed out that "the major density dependent
mortality lossesoccur anong calvesduring their first winter", and that "This

pattern was found in thredifferent studies of thespecies in both Europe and
North America". Gaillard et al.(2000) reviewed a substantiddyger set of data

that confirmed the results of Gaillard at (1998) andranked variability from

highest in juvenile survival to lowest for adult survival.

Clutton-Brock etal. (1991) reported that "The persistent instability of
the St.Kilda [Soay] sheep population is probably caused bytheir consistently
high fecundity associated with asuper-abundance ofood in summer. In
conjunction these may permit the population to pdbsough winter at alevel
close tocarrying capacity; toincrease agnuch as50% during the subsequent
summer; and toenter the next winter at alevel substantially higher han the
island can support".

A major problem in assessingthe sequence proposed here is the
uncertainty as tothe forces that regulated undisturbed populations before
human interference became all-pervasive. The relative magnitudes of the
numerical values of the essential parameters (Fig. 13.10) indicate that
"sensitivity" of A to parameter changes ideast in early survival and greatest
in adult survival, with reproductive rate in anintermediate position. Itmight
thus be suppzed that this sequence mayhave some significance in an
evolutionary sense. The notion of "r and K selection” has lost some of its
earlier preeminence, but nonetheless provides a convenient shorthand
classification of specieswith r-selected groups able torecoup losses in avery
short period, and K-selected speciesrequiring many years torecover from
reductions in numbers. Consequently, séems logial that selection in K-
selected species might favor megulatory process that tends tomaintain
equilibrium numbers by saill, rather han large, changes inA, hence by
modifying early survival. This argument is supported by the resultGaiflard
et al. (2000) who evaluated temporal variation in “fitness componentsiaoige
herbivores. These authors found that the coefficient of variation for early
survival was highest (0.64) in large herbivores andlowest for adult survival
(0.09). They suggested that “the immature stage ..may be the critical
component of population dynamics for large herbivoresidicating that “our
review supports Eberhardt’s hypothesis and generalizes it @l sources of
temporal variation”.

Three major forces can be proposed asinfluencing the large
vertebrates under "natural'tonditions: weather, resourcesnd predation. The
preponderance ofvidence from demaraphic studies indicates that early
survival responds first to both severe weather and to resolincgations. As a
population begins to outstrip its resources, inclement wedier may have a
much more pronounced effectand mayresult in rather sharp fluctuations. A
key question isthe possible regulatory role of predation. In most natral
systems human interference severely limits opportunities to evaltlage role
of predation (Section 12.5). WolfCénis lupus) predation on ungulates haseen
observed to doimantly affect early survival and survival of senescent
individuals (Peterson 1977, Peterson et B984:.Fig. 5, Ballard etl. 1987:Fig. 16,
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Mech et al. 1998). To serve asragulatory function, predation should exhibit a
direct relationship vith prey density, increasing athigh prey densities and
decreasing atower prey numbers. The notion of ratio dependence (Matson
and Berryman 1992) may fulfill this requirement. Evidence hmscumulated to
favor the ratio dependence model in wdf-ungulate interactions HEberhardt
1997, 1998). The crucial question makieh bewhether predation tends tohold
ungulate populations below levels where weathr and resource limitations
become important. If so, then an evolutionary pattern may be implicated.

Exanmpl e 13.1 Sequence of events in density dependence.

The illustration of the original devel opment (Eberhardt 1977:Fig.
2) of the sequence of events indicated in Fig. 13.8 used data from a
nunber of sources. The Hawaiian nonk seal population of French Frigate
Shoals (Section 14.5) illustrates the full sequence in a single
popul ation. Trend of the French Frigate Shoals population through 1993
appears in Fig. 1.18, and was contrasted with the other sites by
Glmartin and Eberhardt (1995). The popul ation increased steadily until
sonmetine in the 1980's, and then began a dramatic decline. The decline
was initially evidenced by finding mal nouri shed pups, and a decreasing
first-year survival (Fig. 13.11).
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Fig. 13.11 First year survival of monk seals on French Frigate Shoals.
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Hi gh adult survival was recorded during the phase of population
increase (Glmartin et al. 1993), but soon began a steady decrease. The
popul ation is not a |arge one, so the nunmber of weaned pups tagged each
year (a major effort is made to tag all pups at weaning) has averaged
around 40 individuals. Consequently sanple size has an appreciable
ef fect on the nunbers of older aninals | ocated (less than 10 individuals
in the data used here), as does the stochastic (chance) variation in
survival. Nonetheless, the pattern of decreasing survival is very
evident in logarithnmic plots of nunbers observed over the years (Fig.
13.12).
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Fig. 13.12. Logarithms of numbers of tagged seals recorded at French Frigate Shoals,
Northwest Hawaiian Islands, 1984 through 1989. Estimates of survival rates are shown for
each year-class. Because the numbers initially tagged (as weaned pups) are roughly the same,
the vertical scale has been adjusted so that the points do not overlap.

The survival rates given in Fig. 13.12 were obtained from the slopes of
| ogarithms of nunbers of individuals returning to the Atoll each year.
More details on survival estimation appear in Glmartin and Eberhardt
(1995). It appears that there has been a steady decrease in adult
survival rates, and this is, of course, evident in the population trend
(Fig. 1.18). It is particularly interesting that the first cohort tagged
(1984) apparently continues to have relatively good survival. The
decreasing trend in survival rates has continued, so that the cohort
tagged in 1996 exhibits an annual survival rate on the order of 40%
Evidently the available food resource for this popul ation has continued
to decline, and “carrying capacity” may not yet have been reached.

Due to relatively small sanple sizes, it has not been feasible to
deternmi ne whether the sequence of events of Fig. 13.8 has occurred in
this population in precisely the order suggested, but clearly the
prescribed series of events has transpired. Age of first reproduction
clearly has been reduced, and it seens reasonably certain that the
overall reproductive success of adult females has decreased (Fig.
13.13). The ol dest tagged individuals in the overall population are now
about 18 years of age, so it is as yet to be determ ned when senescence
becomes inportant. The |argest sanple of reproductive data comes from
anot her site (Laysan Island, see map in Section 14.5), and suggests that
nonk seals do not reach a reproductive peak until appreciably |ater than
ot her pi nni peds.
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Fig. 13.13 Reproductive rates for monk seals at Laysan Island and French Frigate Shoals.

It should be noted that this exanple very likely is not typical, in the
sense that there is not sufficient information to determ ne what the
“typical” approach to an asynptotic population |level night be. As noted
previously in this Chapter, it may be that a reduction in first year
survival and the (likely) concomtant delay in first reproduction may be
sufficient to cause a population to stabilize in the neighborhood of a
carrying capacity value. This is one of the issues that characterize the
limtations of the present state of knowl edge about |ong-lived
vert ebr at es.

13.7 Exercises

13.7.1 Make plots of therate of increase used in Eq. (13.1) and-ig. 13.1 for
r(1)=0.2 , z=1,2,5,11, and K=5000.

13.7.2 A model for density dependence.

Plot eq.(13.3) with b=0.95 and K=5000 and the log form of the generalized
logistic [eq.(13.1)] with r(1)=0.2, z=5, aand K=5000. Note that you will need to
rearrange eq.(13.1) to put it in a log forrapd that you will need to useexp(In
X(t)) to represent N(t) in the portion of eq.(13.1) in brackets, inasmuch as
exp(In(x))=x.

13.7.3 Generating normal distributions.
A convenient way to generate normally distributed errors for studydrensity
dependence is given in the following equations:

x, = (-2log,r,)"'? cos2rr,

x, = (-2log,r,)"'?sin2rr,
where the x’s are random normally distributed values with mean 0 and
variance 1land the r's are uniform random variables (range 0-1). You can
obtain uniform random variables with the function RAND() in EXCEL (note
that you need the parentheses to generate uniform randariebles but don’t
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need to enter a value in them). The above equations generatndbm normal
variables from 2 uniformly disibuted vaues. In doinglargish simulations its
convenient touse both of the random normal numbers thus generated. For
purposes of illustration, we need only use one. Set up a tablanafom normal
numbers using the above equations and try the random walk of Fig. 13.3,
using 100 values. Create agraph onthe same EXCEL sheet and change the
values tosee how the random walk changes. Note that the populations go
extinct fairly regularly, whereas Fig. 13.3 shows anincreasing population.
EXCEL has a command that changes the random numbers to make g mreewh.
on occasion it isdesirable tomake therecalculation manual so aswot to have
the graph change while you are working on it.

Exercise 13.7.4 “Random walk with drift”.

Several ofthe papers referenced inthis chaper discuss “random walk with
drift” using eq.(13.4). It was noted in connection with eq.(13.4) that tEally
simulates anexponentially increasing population. Add another calmn to the
random normal numbers generated above which multiploe®e of therandom
normal numbersby a constant séhat you get anerror term like that used in
eqs(135) and (13.6).Then add aconstant tothe random walk model above to
construct results according to eq.(13.4), as shownFign 13.4.Make agraph of
the random walk model on the sameEXCEL sheet. Vary the corstant
multiplying the normal random variable from, say, 0.1 to 1and note how it
affects the graph opopulation size. Wth a small multiplier the graph should
essentially follow an exponential plot (but on alog scale). Wth a larger
multiplier it becomes quite erratic.

Exercise 13.7.5 Rapid rates of increase.

It was noted in the Chapter that many ofthe papers on testingfor density
dependence appear to bebased ondata on insects. Toexamine this prospect,
plot eq.(13.2) asshown in Fig. 13.2 wth K=5000, but set it upwith 3 columns
and make agraph soyou can compare different values of b.Try b=.95, and
b=.98 which should replicate Fig. 13.2and part of Fig. 13.7. Nowtry values of
b=0.5 to 0.8 to see how different the growth curves are.

Exercise 13.7.6 Lambda for rapid rates of increase.

Add 3 columns to the worksheet for Exercid®.7.5 toshow lambda for each of
the population plots. This can be done with the aon given in the chapter,
i.e.

N, _ Ntb—lKl—b :(ﬁ)l—b
Nt+1 Nt

This shows why the growth curves of exercise 13.7.5 increase so rapidly.

A=

Exercise 13.7.7 The generalized logistic.
Calculate the generalized logistic (eq.13.1) for K =5,000, z=5, r=0.2, 0.4,and K
=5,000, z=2, r=0.2, 0.4and make araph ofthe results onthe same wrksheet.
Note the more rapidincrease generated by @4. One characteristic of the
generalized logistic is showm by the “overshoot” and oscillation for higher
rates of increase and larger values of z.
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Exercise 13.7.8 Bulmer’s tests

Some of the difficulties in testing for densit§ependence can beillustrated by
considering Bulmer's (1975) tests. Thefirst test is basedon the fact that the
squared differences between successivieservations of population size can be
used to approximate the overall variance of a setobfervations, if there is no
trend or pattern inthe data.The test isessentially the Durbin-Watson test of
eq. (9.13), except that Bulmer used the reciprocal of the ratio, i.e., the
reciprocal of eq.(9.13). The table below gives the first 20 observations from the
generalized logistic used in Exercise 13.7.2, 20observations bracketing the
inflection point, and 20observations above the inflection point, along with
logarithms of 20 observations froman exponentialgrowth curve with N(0)=10,
r=0.20.

First 20 obsns

generalized
logistic
5 OBSNS OBSNS EXPONENTIAL
0.2 BRACKETING ABOVE MODEL
5000 INFLECTION  INFLECTION N(0)=10
10 POINT POINT R=1.2
X(t) X(t) X(t)
1 2.30259 7.04288 8.51718 2.30259
2 2.48491 7.22509 8.51719 2.48491
3 2.66723 7.40715 8.51719 2.66723
4 2.84955 7.58883 8.51719 2.84955
5 3.03187 7.76954 8.51719 3.03187
6 3.21419 7.94789 8.51719 3.21419
7 3.39651 8.12049 8.51719 3.39651
8 3.57884 8.27961 8.51719 3.57884
9 3.76116 8.40979 8.51719 3.76116
10 3.94348 8.48962 8.51719 3.94348
11 4.12580 8.51505 8.51719 4.12580
12 4.30812 8.51718 8.51719 4.30812
13 4.49044 8.51719 8.51719 4.49044
14 4.67277 8.51719 8.51719 4.67277
15 4.85509 8.51719 8.51719 4.85509
16 5.03741 8.51719 8.51719 5.03741
17 5.21973 8.51719 8.51719 5.21973
18 5.40205 8.51719 8.51719 5.40205
19 5.58437 8.51719 8.51719 5.58437
20 5.76669 8.51719 8.51719 5.76669

Bulmer's first test is R=V/U where:
n
U=3% (Xa-%)" and V=% (% -X)’
1=1

He gives a way to calculate significance levels, which gives a valu®.686 for
the 1 % pointand 0.909for the 5% point, where the test issignificant if the R
is less than the stated significance point. Calculate Bulmer's R test for fitlse
three columns above and comment. Also comment on the meaning of a
comparison ofthe first and last columns (note that the data are available in
your results for Exercise 13.7.2 so you don’'t have to copy the numbers above).
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Exercise 13.7.9. Bulmer’'s second test.
Bulmer (1975) recognized that his R-test would not behawagisfactorily in the

presence of sampling error so devised a sectest for that purpose, which is
R*=W/V where:

n-2

W= Z(mz =%, (% —X)

He gives approximate criteria for significance as:

. __137_139_613

Roos = n 2 n?
. 201 258 1279
Roor =~ n + 2 - n®

and indicates significance if R* isless han the calculated significance level.
Try this on the first 20observations for the generalized logistic asgiven in
Exercise 13.7.8 and comment on your results.



